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Abstract: Survival analysis is the widely used statistical tool for new intervention 

com¬parison in presence of hazards of follow up studies. However, it is difficult to 

obtain suitable survival rate in presence of high level of hazard within few days of 

surgery. The group of patients can be directly stratified into cured and non-cured strata. 

The mixture models are natural choice for estimation of cure and non-cure rate 

estimation. The estimation of cure rate is an important parameter of success of any 

new intervention. The cure rate model is illustrated to compare the surgery of liver 

cirrhosis patients with consenting for participation HFLPC (Human Fatal Liver 

Progenitor Cells) Infusion vs. consenting for participation alone group in South Indian 

popula-tion. The surgery is best available technique for liver cirrhosis treatment .The 

success of the surgery is observed through follow up study. In this study, MELD 

(Model for End-Stage Liver Disease) score is considered as response of interest for 

cured and non-cured group. The primary efficacy of surgery is considered as 

covariates of interest. Distributional as¬sumptions of the cure rate are solved with 

Markov Chain Monte Carlo (MCMC) techniques. It is found that cured model with 

parametric approach allows more consistent esti¬mates in comparison to standard 

procedures. The risk of death due to liver transplantation  in liver cirrhosis patients 

including time dependent effect terms has also been explored. The approach assists 

to model with different age and sex in both the treatment groups. 
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1. INTRODUCTION  

 Cirrhosis is special state of liver to be get trapped within the sea of scar and struggle to 

regenerate. It influences the gradual shrinkage of the size of the liver. In liver cirrhosis problem, 

the duration between transplantation to recover is crucial period for patients. Patients are generally 

measured through follow up periods with liver functioning effects. The disease severity in patient 

with liver cirrhosis is measured through the model for end stage liver disease (MELD) [1]. It is 

continuous disease severities scale with highly predictive of the risk of dying from liver. The score 

is adopted by UNOS (the United Network for Organ Sharing) for use in allocating livers to patients 

on the liver transplantation waiting list. Set of respondent are divided into two parts as cured and 

non-cured. The main goal of this work is to look on the cure and non-cured rate among liver 

cirrhosis patients through MELD score. The patients alive at any point of times are defined as cured 

otherwise non-cured. The mixture distribution is useful to formulate the cure rate model. The deep 

consideration is important on patients’ treatment effects through long term observations. The model 

is ultimate choice for treatment effect comparison. It is widely applied in the field of economic, 

reliability and criminology. Recently, Cure rate model in medical research is elaborated and 

extended [1-8]. It is applied for AIDs in HIV positive patients [9]. The survival experience is 

defined with cure rate model. It is also used in the recidivism time among the prisoners in Western 

Australia [10]. The product of log-normal survival function is appropriate for non-cured portion of 

patients. The simple log-normal distribution as a choice of mixture model is elaborated in 

application to the analysis of important exploration in Japan [4]. It provides stratified results in drug 
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treatment effect of lymphoma patients [11]. The exponential distribution as a choice of mixture 

model is useful for non-cured patients [12]. The MELD score (UNOS Modification) is calculated 

as follows 

𝑀𝐸𝐿𝐷 𝑆𝑐𝑜𝑟𝑒 =  9.57 × 𝑙𝑜𝑔𝑒 (𝑠𝑒𝑟𝑢𝑚 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒) + 3.78 ×  𝑙𝑜𝑔𝑒 (𝑏𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛)  + 11.2
×  𝑙𝑜𝑔𝑒 (𝐼𝑁𝑅) + 6.43. 

The MELD is useful tool to detect the liver status in patients. It is widely used method for organ 

allocation in liver transplantation [13-15]. The score function is formulated with consideration of 

liver and renal functions. Several studies have concluded that the liver transplanted patients having 

low MELD score can be influenced for death [16-19]. The different biochemical parameters viz., 

serum creatinine, bilirubin & INR are used to calculate the MELD score. The details to calculate 

the MELD score can be cited with 

 http://www.unos.org/docs/MELD_PELD_Calculator_Documentation.pdf.  

In this study, the cure rate model is applied through the changes of MELD score among the 

liver cirrhosis patient. The computation of treatment effect is performed through survival analysis. 

The MELD score is applied as primary endpoint to perform the analysis. The data are considered 

from the phase 3 clinical trials in which liver cirrhosis patients were undergone with HFLPC for 

36months. The dataset includes 104 patients, of whom 62 are male and 42 female. 

 

2. DATA METHODOLOGY  

 Patients must have a MELD score of 12 to 24, were considered as ineligible for a solid liver 

transplant because of documented co-morbidities and must have an estimated life expectancy of 

approximately 6 to 18 months. The data considered from the path 

http://www4.stat.ncsu.edu/~boos/var.select/pbc.html, as accessed on Jan 28, 2013. Assessments for 

initial determination of patient eligibility (14 to 10 days prior to the day of intended cell 

transplantation) were included a complete physical examination and medical history, grading of 

encephalopathy, clinical laboratory studies ( haematology, blood chemistry, urinalysis and 

coagulation tests), a serum pregnancy test (for females of child-bearing potential), ABO blood 

typing (if not known), human leukocyte antigen(HLA)Class I antigen typing (if not known) and a 

Panel Reactive Antibody test with identification of any preformed antibodies, serologic testing for 

Epstein-Barr virus (EBV) and cytomegalovirus (CMV) and calculation of the patient’s MELD. 

Only cells from an ABO-compatible donor with no HLA Class I antigen to which the recipient has 

performed antibodies were selected for transplant. Furthermore, cells from an EBV-positive or 

CMV-positive donor were only administered to EBV-positive or CMV-positive recipients. 

 Intravenous administration of adequate hydration was begun at 2:00 AM and last until about 

one hour before discharge. Assessments and procedures that was preceded the catheterization 

procedure include clinical laboratory studies, assessment of donor-specific HLA Class I antigens 

(expected to be absent prior to cell transplantation), grading of encephalopathy, a brief physical 

examination, calculation of the patient’s MELD and Child-Pugh Scores and assessment of trough 

plasma tacrolimus concentration. Prophylactic antibacterial and antifungal agents were 

administered before (both agents) and after (antibiotics only)the catheterization procedure. Oral 

Pepcid (famotidine) and a 30-minute infusion of 250 mg of Solu-Medrol (methylprednisolone) 

were administered 2 hours before splenic artery catheterization. 

 The patients were taken to the radiology suite approximately 30 to 60 minutes before 

splenic artery catheterization. After induction of conscious sedation, a catheter was inserted into 

the femoral artery and, under fluoroscopic guidance, passed into the splenic artery. The final 

position of the catheter was confirmed with a small volume of contrast dye. Blood pressure, heart 

rate, respiratory rate and O2 saturation was monitored frequently during cell infusion and until the 

http://www.unos.org/docs/MELD_PELD_Calculator_Documentation.pdf
http://www4.stat.ncsu.edu/~boos/var.select/pbc.html
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catheter is removed. Confirmation of splenic artery and splenic vein patency with contrast media 

was performed just before cell infusion and again just after cell infusion. 

Discharge medications were included Prograf (dosage adjusted, if necessary, based on 

assessment of trough tacrolimus concentration assessed that morning),prednisone (20 mg P.O. once 

daily for two days; then 10 mg P.O. once daily for the next five days; then 5 mg P.O. once daily 

until the Week 24 Visit) and Diflucan (fluconazole), 100 mg P.O. once daily for ten days. Patients 

were scheduled to attend follow-up visits twice in the first week after cell transplantation, then 

weekly until eight weeks after cell transplantation, then once every four weeks until 24 weeks after 

cell transplantation, then once every three months until two years after cell transplantation. Routine 

clinical laboratory testing (haematology, blood chemistry and urinalysis) and assessments of trough 

plasma tacrolimus levels were also performed once each month between visits (that were scheduled 

every three months) after the Week 24 Visit. Efficacy assessments after cell transplantation was 

included the MELD Scores. Results of testing for donor-specific soluble antigens and data 

pertaining to episodes of encephalopathy were also contributed to the interpretation of efficacy in 

this study.  

 

3. PARAMETRIC CURE RATE MODEL 

 Parametric cure rate model through Bayesian   and Frequency approach are initiated nearly 

two decades earlier [20-22]. It is built with assumption of two groups of patients i.e. (I) cured and 

(II) non-cured. However, the distributional assumptions of group of patients are sometimes become 

problematic. Non-cured part is applicable for those samples that are subject to the event of death 

and rest of them are as cured. Those patients are survived till the end of the study is defined as 

cured group. The finite mixture of Weibull distributions [23] and Generalized Gamma distribution 

[2] in survival function has been elaborated in melanoma clinical trial data and found suitable. 

However, the models are quite complicated to apply for analysis. The flexible parametric model 

[24] in survival analysis is discussed and extended with relative survival function [23, 25]. The 

objective of this study is to show the effect of HFLPC on the liver cirrhosis patients through cure 

rate modelling. Let the observed failure time is T. If T = ∞, then patients are considered to be cured 

with new surgical procedure. Now, it is considered that N is the total number of patients in the 

study. For any value of N, {Yi}i=1
N  is assumed to be distributed with survival function  

𝑃(𝑌 >  𝑡)  =  𝑆(𝑡)  =  1 −  𝐹(𝑡)                      (1) 

where Yiis the survival time of ith individual in the study. Further, individuals not-cured are 

ordered as Y(1) < Y(2) < . , . , . , < 𝑌(r) <. , . , < Y(N) through their survival time. The term P(Y >  𝑡) 

is free from N. Let r ≤ N and the number of persons not-cured is r. Then T = Yr  for 1 ≤ r ≤ N. 

The conditional distribution of T, given N and r is 

𝑃(𝑇 ≥  𝑡|𝑁, 𝑟)  =  𝑉(𝑁 =  0)  +  𝑊(𝑆(𝑡); 𝑁 −  𝑟 +  1, 𝑟) 𝑉(𝑁 ≥ 𝑟 ≥ 1)               (2) 

where the term V is the indicator function.  

Now, 

 𝑊(𝑆(𝑡); 𝑁 −  𝑟 +  1, 𝑟) = ∑ (𝑁
𝑗

) [𝐹(𝑡)]𝑗[𝑆(𝑡)]𝑁−𝑗
𝑟−1

𝑗=0
   (3) 

𝑊(𝑆(𝑡); 𝑁 −  𝑟 +  1, 𝑟) = 𝑁(𝑁−1
𝑟−1

) ∫ 𝜇𝑁−𝑟(1 − 𝜇)𝑟−1𝑑µ
𝑆(𝑡)

0
               (4) 

W(S(t); N − r +  1, r)  is the beta distribution function. The survival function with 

unconditional distribution is further defined as  

𝑆∗(𝑡)  = 𝑊∗[𝑃(𝑇 ≥  𝑡|𝑁, 𝑟)]  =  𝑃(𝑁 =  0)  +  𝑊 ∗ [𝑊(𝑆(𝑡); 𝑁 −  𝑟 +  1, 𝑟]𝑉(𝑁 ≥ 𝑟 ≥ 1)   
(5) 
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If lim
t→∞

S(t) = 0then S∗(t)  becomes improper when  lim
t→∞

S∗(t)  = P(N = 0) > 0 

The function S∗(t) is 0 < S∗(t) <  1 and it is restricted with N ≥  r ≥  1. 

The probability function P(N =  0) is the cure fraction, which is depends only on the distribution 

of N irrespective of the value of r.  The function f ∗(t) is 

𝑓∗(𝑡)  =  𝑓(𝑡)𝑊∗[𝑁(
𝑁 − 1
 𝑟 − 1 

)  × [𝑆(𝑡)𝑁−𝑟][𝐹(𝑡)]𝑟−1𝑉(𝑁 ≥  𝑟 ≥  1] (6) 

Where f(t) is proper density of F(t). It is not possible to measure the value of N and can be 

modeled through probabilistic terms. However, the value of N can be specified for r. Now, let N 

follows Poisson(θ) with a mean θ. So, the cure fraction is defined with 

𝑃(𝑁 =  0)  =  𝑒𝑥𝑝(−𝜃)     (7) 

The parameterθ is observed through non-informative prior g(θ). It generates the flat prior 

on log(θ). 

The value r = 1, involves that T = Min1≤k≤NYk and similarly r = N gives T = Max1≤k≤NYk 

The problem is still exists to specify   r|N . If r|N  assumed to follow discrete uniform 

distribution. Then the equation (5) is 

𝑆∗(𝑡) =  𝑃(𝑁 =  0)  +  𝑆(𝑡)(1 −  𝑃(𝑁 =  0)   (8) 

The cure fraction depends on P(N =  0) with N ∼  Poisson(θ)the non-informative prior is set 

as  g(θ) = 1/θ. 

 

4. DIFFERENT MODELS 

4.1. Model1 

Let r =  1, then T = Min1≤k≤NYk and  

𝑃(𝑇 ≥  𝑡|𝑁)  =  1. (𝑁 =  0)  + [𝑆(𝑡)]𝑁𝑉(𝑁 ≥  1)                          (9) 

It is assumed that N ∼  Poisson(θ)with moment generating function m(t).  The cure fraction 

is defined as  

𝑃(𝑁 =  0)  =  𝑚(−∞)                       (10) 

The marginal distribution of T is obtained with 

𝑆∗(𝑡)  =  𝑚[𝑙𝑜𝑔𝑆(𝑡)]                                   (11) 

 

4.2. Model 2 

Let 𝑟 =  𝑁, then 𝑇 = 𝑀𝑎𝑥1≤𝑘≤𝑁𝑌𝑘 and the conditional distribution of 𝑇 given 𝑁 is expressed 

as 𝐹(𝑡) =  1 −  𝑆(𝑡) with 

𝑆∗(𝑡) =  1 +  𝑚(−∞) −  𝑚[𝑙𝑜𝑔𝐹(𝑡)]                                  (12) 

For: 𝑁 ∼  𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃), 𝑆∗(𝑡)  =  1 +  𝑒𝑥𝑝(−𝜃)(1 −  𝑒𝑥𝑝((𝑡))). 

For: 𝑁 ∼  𝐺𝑒𝑜(𝜃), 𝑆∗(𝑡)  =  (1 − 𝜃)  +  [𝜃 2𝐹(𝑡)/(1 − 𝜃 𝐹(𝑡))]  with 1 −  𝑒𝑥𝑝(−𝜃)  is 

acure fraction for0 <  𝜃 <  1. 

Let the hazard function ℎ∗(𝑡) and it can be defined with 

𝑚′(𝑡)  = 𝛿

𝛿𝑡
𝑚(𝑡)                               (13) 

ℎ1
∗(𝑡) =

𝑚′[𝑙𝑜𝑔{𝑆(𝑡)}]

𝑚[𝑙𝑜𝑔{𝑆(𝑡)}]
𝑓𝑜𝑟 𝑚𝑜𝑑𝑒𝑙 1              (14) 
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ℎ2
∗ (𝑡) =

𝑚′(𝑙𝑜𝑔𝐹(𝑡))𝑓(𝑡)

[1+𝑚(−∞)−𝑚(𝑙𝑜𝑔𝐹(𝑡)]𝐹(𝑡)
𝑓𝑜𝑟 𝑚𝑜𝑑𝑒𝑙 2                                (15) 

Let 

𝐽(𝑡)  =  ℎ1
∗(𝑡)/ℎ2

∗(𝑡)                      (16) 

Here, 𝐽(𝑡) is dependent on 𝑆(𝑡) and 𝜃. If lim𝑡→0 𝐽(𝑡)  =  𝑒𝜃 and lim𝑡→∞ 𝐽(𝑡)= 𝑒−𝜃.  

the link function 𝐽(𝑋𝑇𝛽 )is defined as  𝜃 . Here 𝑋𝑖 is covariate of interest for the ith individual 

and 𝜃𝑖 is assumed as mean parameter. 

The Model 1 (obtained from equation 11)and Model 2 (obtained from equation 12) are 

subdivided with [Model 1(a), Model 1(b), Model 1(c), Model 1(d)]and [Model 2(a), Model 2(b), 

Model 2(c), Model 2(d)] respectively. The assumptions are 

𝑀𝑜𝑑𝑒𝑙 1 (𝑎) 𝑎𝑛𝑑 𝑀𝑜𝑑𝑒𝑙 2 (𝑎): 𝐽(𝑋𝑇𝛽 ) =   𝜃𝑖; 𝜃𝑖  =  𝜃; 𝑁 ∼  𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃)                           (17) 

𝑀𝑜𝑑𝑒𝑙 1 (𝑏) 𝑎𝑛𝑑 𝑀𝑜𝑑𝑒𝑙 2 (𝑏) ∶  𝐽(𝑋𝑇𝛽 ) =   𝜃𝑖;  𝜃𝑖  =  𝜃; 𝑁 ∼  𝐵𝑒𝑟(𝜃)                              (18) 

𝑀𝑜𝑑𝑒𝑙 1 (𝑐) 𝑎𝑛𝑑 𝑀𝑜𝑑𝑒𝑙 2 (𝑐) ∶  𝐽(𝑋𝑇𝛽 ) =   𝜃𝑖;  𝜃𝑖  =  𝜃; 𝑁 ∼  𝐵𝑖𝑛(𝐾, 𝜃)                              (19) 

𝑀𝑜𝑑𝑒𝑙 1 (𝑑) 𝑎𝑛𝑑 𝑀𝑜𝑑𝑒𝑙 2 (𝑑) ∶  𝐽(𝑋𝑇𝛽 ) =   𝜃𝑖;  𝜃𝑖  =  𝜃; 𝑁 ∼  𝐺𝑒𝑜(𝜃)                     (20) 

The response in the above models is distributed with Weibull distribution but free with value 

of 𝑁. These are maintained with cure parameter 𝜃. In this study, the performances of model are 

compared. 

 

 

5. ANALYSIS OF DATA 

 

 Let Y is the survival time of any subject. The indicator variable K =  0 when the subject is 

cured and K ≠ 0 when he/she is non-cured. Let P(K = 0)  =  p,  and 

 P(K ≠ 0) = 1 − p. Suppose, F is the cumulative distribution function of the whole population 

and F0 is the cdf for the non-cured. For  y ≥  0. 

𝑃(𝑌 ≤  𝑦|𝐾 ≠ 0)  =  𝐹0(𝑦)                     (21) 

Then the 𝐹(𝑦) can be defined as  

𝑃(𝑌 ≤  𝑦/𝑁 = 1)  = 0                             (22) 

so, 

𝐹0(𝑦) =
𝐹(𝑦)

1−𝑝
                                       (23) 

It is to be noted that 𝐹 is an improper cdf with𝐹(𝛼)  <  1.  

Suppose, 𝑆(𝑦) =  1 − 𝐹(𝑦) and 𝑆0(𝑦) = 1 − 𝐹0(𝑦)  are the survival function for the 

corresponding cdfs. Then 

𝑆(𝑦) = 1 − (1 − 𝑝)𝐹0(𝑦) =  𝑝 + (1 − 𝑝)𝑆0(𝑦)                           (24) 

The term p  is substituted with  exp(−θ) . The count variable with observation N  in the 

population can be assumed with Poission distribution with mean  θ.  

Let Mi is the random variable of time for the ith individual MELD score.  

𝐹(𝑦) = 1 − 𝑆(𝑦)                       (25) 

The time of decline of liver functions is defined with random variable 
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𝑌 =  𝑀𝑖𝑛{𝑀𝑖, 0 ≤  𝑖 ≤  𝑁}, 𝑤ℎ𝑒𝑟𝑒𝑃(𝑀0  =  ∞) = 1                    (26) 

The survival function of 𝑌is defined as  

𝑆(𝑦) =  𝑃(𝑀𝐸𝐿𝐷 𝑠𝑐𝑜𝑟𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑦)                  (27) 

 

The equation (27) is extended into two parts by 

𝑆(𝑦) = 𝑒𝑥𝑝(−𝜃) + ∑ 𝑆(𝑦)𝑘 𝜃𝑘

𝑘!
𝑒𝑥𝑝(−𝜃) = 𝑒𝑥𝑝(−𝜃 + 𝜃𝑆(𝑦)) = 𝐸𝑥𝑝(−𝜃𝐹(𝑦))∞

𝑘=1         (28) 

𝑎𝑠 𝜃 → ∞, the cure rate function 𝑆(𝑦)tends to zero and for 𝜃 →  0 it tends to 1. The density 

function is used for 

𝑓(𝑦) =
𝑑

𝑑𝑦
𝐹(𝑦)                     (29) 

where, 

𝑓(𝑦) =  𝜃𝑓(𝑦)𝑒𝑥𝑝(−𝜃𝐹(𝑦))                            (30) 

 

However 𝑓(𝑦)not the proper probability density function and 𝑆(𝑦)is not also proper survival 

function. The hazard function is 

ℎ(𝑦) =  𝜃𝑓(𝑦)                       (31) 

where,  ℎ(𝑦) →  0 at a fast rate as 𝑦 → ∞ and  ∫ h(y)dy <  ∞
∞

0
. Here, the covariates are 

modelled through θ cure rate modelling. This is attractive characteristics of cure rate model. The 

part with non-cured rate model is designed with 

𝑆∗(𝑦) =
𝑒𝑥𝑝(−𝜃𝐹(𝑦))−𝑒𝑥𝑝 (−𝜃)

1−𝑒𝑥𝑝 (−𝜃)
                (32) 

𝑆∗(0) = 1, 𝑆∗(∞) = 0 So that 𝑆∗(𝑡) is a proper survival function. The survival density for the 

non-cured population is given  

𝑓∗(𝑦) = −
𝑑

𝑑𝑦
𝑆∗(𝑦) =

𝑒𝑥𝑝(−(𝑦))

1−𝑒𝑥𝑝(−𝜃)
(𝑦)                   (33) 

and the hazard function for the non-cured population is denoted with 

ℎ∗(𝑦) =
𝑓∗(𝑦)

𝑆∗(𝑦)
=

𝑒𝑥𝑝(−𝜃𝐹(𝑦))

𝑒𝑥𝑝(−(𝑦))−𝑒𝑥𝑝(−𝜃)
ℎ(𝑦) = (

1

𝑃(𝑌 < ∞|𝑌 > 𝑦)
)ℎ(𝑦)          (34) 

The above mentioned equation is extended with ℎ∗(𝑦) →
𝑓(𝑦)

𝑆(𝑦)
 as  𝑦 → ∞ , and thus ℎ∗(𝑦) 

converges to the hazard function to the promotion time variable M as 𝑦 → ∞. The cure rate model 

is defined with mixture of cured and non-cured rate model by, 

𝑆(𝑦) =  𝑒𝑥𝑝(−𝜃) + (1 − 𝑒𝑥𝑝(−𝜃)𝑆∗(𝑦))              (35) 

The term 𝑒𝑥𝑝(−𝜃) is used as cured function and 𝑆∗(𝑦) as non-cured function. In the above 

mentioned equation 𝑒𝑥𝑝(−𝜃)  is defined with−𝑥𝛽. The relationship exists with 

𝜃 =  𝑒𝑥𝑝(𝑥𝛽)for  𝑝 × 1 vector of covariate of 𝑥 and regression co-efficient 𝛽 only. 

6. LIKELIHOOD AND POSTERIOR DISTRIBUTION 
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In case of ith individual, the data is presented as  Di = (xi, ti, vi). Here, xiis the covariate of 

interest, ti is the failure time and vi the indicator of failure. 

The likelihood function for the ith individual of data is defined with 

𝐿(𝜃, 𝜑|𝐷) = (∏ 𝑆 (
𝑦𝑖

𝜑
)

𝑁𝑖−𝑣𝑖𝑛
𝑖=1 )(𝑁𝑖𝑓(𝑦𝑖|𝜑))𝑣𝑖) ∗ 𝑒𝑥𝑝 {∑ 𝑁𝑖 𝑙𝑜𝑔(𝜃) −𝑛

𝑖=1 𝑙𝑜𝑔(𝑁𝑖!)) − 𝑛𝜃}        

(38) 

The density function of weibull is 

𝑓(𝑦𝑖|𝜑)  = 𝛼𝑦𝛼−1 𝑒𝑥𝑝{𝜆 − 𝑦𝛼𝑒𝑥𝑝 (𝜆)}              (39) 

 

The joint non-informative prior 𝜋(𝛽, 𝜑) ∝ 𝜋(𝜑)is applied for the function 𝑓(𝑦𝑖|𝜑) of Weibull 

distribution. The parameter 𝜑 is derived from the parameters of the equation (15) i.e. (𝛼, 𝜆)′. The 

parameters in the function 𝜋(𝛽, 𝜑)  are independent and 𝜋(𝛽) is assumed with uniform prior. 

Further the function 𝜋(𝜑) is generated with 

𝜋(𝜑) = 𝜋(𝜑|𝛿0, 𝜏0) ∗ 𝜋(𝜆)                            (40) 

and 

𝜋(𝛼, 𝛿0, 𝜏0) ∝ 𝛼𝛿0−1 𝑒𝑥𝑝(−𝜏0𝛼)                 (41) 

Here, 𝛿0and𝜏0 are the hyper-parameters and the posterior distribution of(𝛽, 𝜑)based on the 

observed data is 

𝐷𝑜𝑏𝑠 = (𝑛, 𝑦, 𝑋, 𝑣)                       (42) 

with 

𝜋(𝛽, 𝜑|𝐷𝑜𝑏𝑠) ∝ (∑ 𝐿( 𝛽, 𝜑|𝐷)) ∗ 𝜋(𝛼|𝛿0, 𝜏0) ∗ 𝜋(𝜆)            (43) 

The posterior mean and Highest Posterior Estimates has been conducted through MCMC 

simulation. The likelihood used to compute the posterior is 

𝜋(𝛽, 𝜑, 𝑎0|𝐷𝑜𝑏𝑠) ∝ [∑ 𝐿( 𝛽, 𝜑|𝐷0)]𝑎0 ∗ 𝜋0(𝛽, 𝜑)𝑎0
𝛾0−1(1 − 𝑎0)𝜆0−1     (44) 

The beta prior is assumed for 𝑎0. The normal prior with mean 0 and variance 0.001 is applied 

for 𝜆 and 𝛾 parameter. The function 𝐿(𝛽, 𝜙|𝐷) is observed with data likelihood of 𝐷. The results 

are given in next section. 

 

7. SIMULATION STUDY 

 

 In view of the objective stated in Introduction section, the models are applied to estimate 

the parameter of interest. The developed models are used to compare the estimated parameters of 

interest. The iteration number was fixed with 5000 samples. The results are given in the Table 4. 

Based on the simulation, it is concurred that the relative bias is not enormous. The maximum 

relative bias is observed by 30%. It shows that the proposed approach turn out estimates near to the 

true parameters values. It can be concluded that the proposed approach is consistent and provides 

logical output. 

8. MODEL COMPARISON 
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 The selection of best model is important in any statistical inference. The model selection 

must be based on scientific impact and repetitive in ideal condition in other study. The likelihood 

given above can be different for the models to serve the real assumption and requirement of hazard 

and survival function. There are several types of model selection procedures with selection tools 

like Bayes factor (Robert et al., 1995), BIC, AIC and DIC. The DIC is selected for the best fitted 

model mentioned in equation  (17)  to (20).  

The DIC is based on the posteriors by,   

𝐷𝐼𝐶 = 𝐷(�̅�) +  𝑃𝐷               (45) 

The term PD is applied to measures the complexity of the model. It is defined as  

 

𝑃𝐷 = 𝐸𝛾|�̅� [−2𝑙𝑜𝑔𝐿 (
�̅�

𝛾
)] + 2𝑙𝑜𝑔𝐿(

�̅�

𝛾
)                       (46) 

and  

𝐷(𝛾) = 𝐸𝛾/�̅� [−2𝑙𝑜𝑔𝐿 (
�̅�

𝛾
)]                 (47) 

 

�̅� is the estimated value of the 𝛾. It is the posterior mean of the posterior median [28]. The 

model has the result with smallest DIC is considered as best fitted. The software WINBUGS version 

2.14 is explored to compute the DIC value. 

 

9. ANALYSES OF LIVER CIRRHOSIS DATA 

 

 Table 1 contains the baseline and demography characteristics of liver cirrhosis patient in 

treated and control group. The mean age of liver cirrhosis patient in treatment group is 48.6 with 

standard deviation (SD) 9.38 whereas in control group, the mean age is 49.85 with SD 11.06. The 

distribution of male in treated and control group is 10(12.05%) and 70(76.09%) respectively. 

Similarly the distribution of female in treated and control is 73(87.95%) and 22(23.91%) 

respectively. The mean height of liver cirrhosis patient in treatment group is 164.89 with SD 4.46 

whereas in control group, the mean height is 165.38 with SD 5.84. The mean weight of liver 

cirrhosis patient in treatment group is 65.71 with SD 5.24 whereas in control group, the mean 

weight is 69.51 with SD 8.87. The mean Respiratory Rate (RR) of liver cirrhosis patient in 

treatment group is 25.99 with SD 16.59 whereas in control group, the mean RR is 21.43 with SD 

1.62. The mean Hear Rate (HR) of liver cirrhosis patient in treatment group is 72.89 with SD 

15.61 whereas in control group, the mean HR is 77.22 with SD 2.08. Figure 1-3: Demonstrates the 

distribution of liver cirrhosis patients surviving over the study duration using Kaplan Meier plot. 

Figure 4: Demonstrates the distribution of transformed MELD scores at different arbitrary values 

of lambda. To illustrate the methodology, the data from Liver cirrhosis clinical trial considered. 

The covariates are age(x1), sex(x2) (male, female), and MELD Score(x3). Table 2 gives statistical 

summaries for the covariates for this subset of 94 subjects are used in the analysis. In all of the 

computations, all the covariates are standardized to have mean 0 and standard deviation 1 in order 

to improve the convergence of the MCMC algorithm. Specially, standardizing the covariates 

greatly reduces the correlation between the intercept term and the other regression coefficients. The 

regression co-efficient of covariate age refers that there is positive impact of age on cure rate for 

patients in treated group as compare to control group i.e. if there is an increase of one year then it 
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is expected that there may be a chance of increase in cure rate by 0.21 in treated group as compare 

to control group with 95% credible interval (0.15, 0.24). The interpretation of age can also be given 

in odds ratio (𝑒𝑥𝑝(𝛽𝐴𝑔𝑒 =  1.23)). The subject becomes older by one year the odds of getting 

cure in treated group is more as compare to control group. The similar interpretation can be given 

for sex (𝑒𝑥𝑝(𝛽𝑠𝑒𝑥 =  1.59)). The male patients have 1.59 times more odds of get- ting cured as 

compare to female patient when treated with study therapy. The kappa value of 5.78 indicates that 

there is a positive agreement of covariates (age, gender and MELD score) on liver cirrhosis patients 

for better cure for treated group as compare to control group with 95% credible interval 

(2.58,10.34).The estimated Posterior Medians of different Models is provided in Table 3. The 

Goodness-of-Fit for model on Liver Cirrhosis Dataset is provided in Table 4. 

 

10.  MODEL PERFORMANCE 

 

 A total of 10,000 samples with 1000 refreshment are generated. The effect of MELD score 

are observed for each models to fit the models with 1(a), 1(c), 1(d), and 1(e) and consequently 2(a), 

2(c), 2(d), and 2(e). The continuous variables are assumed to be generated from 𝑁(0,1)
.
 In model 

1(d) and 2(d) it is assumed that 𝐽(𝑋𝑇𝛽 ) = 2  and  𝛽1 = 1. In case of model 1(a), 1(c) and 2(a) to 

2(c) the β = (3, 1) and ρ = 1 is considered for model iterations. The initial value of parameters is 

based on optimum value observation through simulation study. The histogram of MELD scores 

from the simulation studies are given in figure4.The MCMC iteration provides advantage over 

uncertainty of the models. This parameter appeared to be well identified in our MCMC 

computations. The model 1(a) acquired 95% posterior credible interval for P(r = 1) about -1.21(-

1.63,-1.02) with assumption of having P(r = 1) = P(r = N) = 1/2. Sex, the interval was -0.11(-0.19,-

0.03) in Model 2(a). Model 1(a), 1(b), 1(d) are found perform inferior than model 1(c). Model 2(c) 

seems to be performed better than model 2(a), 2(b) and 2(d). The analysis of MELD score is 

illustrated methods on discussed model over all observed patients in the clinical trials. It is 

performed to compare between two treatment groups. The comparison between cases and control 

are performed with Kaplan Meier estimators. The product limit comparisons are given in figure 1 

to 3. The cure fractions observed through models are given in tables 4. The Kaplan-Meier estimates 

between treatment and control is also produced after adjustment with sex. Among male patients the 

control groups worked better than cases (figure2). The overall survival among control group found 

better than cases (figure 3). The distributions of transformed MELD score at different arbitrary 

values of lambda are given in figure 4. The relative biases are given in table 4 for different 

parameters. It shows that the maximum bias observed for β2 in model 2 (b) and minimum β3 in 

model 1(a). The best fitted model is 1(c) with DIC value 230.14. The DIC’s for model 1(a), 1(b) 

and 1(d) are 243.52, 237.65 and 250.61. Whereas, the DIC observed for model 2(a), 2(b) and 2(c) 

are 273.12, 247.91, 242.35 and 265.79. It shows that the model 2(c) is best among models 2(a-d) 

(Table 5). The level of harm due to alcohol in the population can be detected through liver cirrhosis 

prevalence (Leon et al., 2006). The data are considered generated from Phase three clinical trial in 

which liver cirrhosis subjects were undergone with HFLPC for 36 months. The dataset includes 

104 subjects, of whom 62 are male. In count, the covariate of interest MELD score is used as 

indicator ( up to normal =0 other wise 1) for each individual The descriptive statistics with Kaplan-

Meier curve are given in the Figure 1 to 3. Table 3 gives the posterior median estimates of MELD 

scores for the different models of the liver cirrhosis data set. The covariates included are a geat 

baseline observation, sex (male or female), and MELD score (normal or not). As per model 2 from 

section 3, the parameters affect the cure probability, with positive estimates. 
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11. DISCUSSION 

 

 This paper has explored the risk of death due to liver transplantation in Cirrhosis patients 

including time-dependent effects terms. The Bayesian prior assumption is applied to formulate the 

posterior mean from the cure rate modelling. This work is contributed with exploration of cure rate 

modelling in liver cirrhosis patients. The MELD score is considered as response in the cure rate 

modelling. The illustrated method can also be suitable in other experimental study. The cure rate 

model given in this study is to explore the data on liver cirrhosis where significant proportions of 

patients are cured. The cure rate model is an alternative choice of Cox proportional regression 

model. The Cox proportional model is simple because it is free with parametric assumption. 

However, the cure rate model is useful to stratify the patients into two groups and to compare the 

performance between cure and non-cured groups. An application of the model to the data from the 

liver cirrhosis patients under gone to the treatment with HPCLC for one year gives the important 

information about drug effect. The study could be extended with inclusion of other related 

covariates. The model proposed in this paper assumed that the covariates affect only the probability 

of being cured. A more general model may be proposed that also includes the effects of covariates 

on the failure time distribution. An R and Winbugs package are available for download at the web 

site 

http://cran.r-pro ject.org/  

and  

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml.  

Using these programs, cure rate modelling can be applied in situation similar to those presented 

in this paper. The applied method may also be suitable in other experimental study. The model can 

be valid in the small size data set. The regression co-efficient of covariate (age) refers that 

there is positive impact of age on cure rate for patients in treated group as compared to control 

group The male patients have higher odds of getting cured as compared to female patient when 

treated with study therapy. The kappa estimates indicates that there is a positive agreement of 

covariates (age, gender and MELD score) on liver cirrhosis patients for better cure for treated group 

as compare to control group. In this data we found that Model 1 (c) and Model 2(c) give precise 

estimates of posterior median in comparison with all other models i.e. these two models have very 

small DIC values among all other models (Table 5). 
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Table 1: Descriptive statistics about baseline observations of the patients 

Parameters  Treatment group 

Mean (SD)  

Control Group 

Mean (SD) 

Age  48.60(9.38)  49.85(11.06) 

Gender       Male 

                   Female 

10 (12.05%) 

73 (87.95%) 

70 (76.09%) 

22 (23.91%) 

Height  164.89(4.46)  165.38(5.84) 

Weight  65.71(5.24)  69.51(8.78) 

Respiratory rate (RR)  25.99(16.59)  21.43(1.62) 

Heart Rate  72.89(15.61)  77.22(2.08) 

 

 

 

 

 

Table 2: The posterior estimates of covariates in cured rate modelling 

Parameter  Mean  SD  2.5%  97.5% 

βAge  0.21  0.03  0.15  0.24 

μ  4.10  0.30  3.87  4.25 

βSex  0.47  0.13  0.32  0.63 
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Table 3: Posterior Median of Different Models 

Parameter 

Model 1 Model 2 

(a) (b) (c) (d) (a) (b) (c) (d) 

Intercept -1.21(-1.63,-1.02) -0.92(-1.10,-0.76) -0.05(-0.19,0.11) -1.03(-1.24,-0.89) -2.08(-2.21,-1.93) -0.92(-1.05,-0.79) -.98(-1.13,-.78) -1.23(-1.32,-1.14) 

Age 0.13(-0.63,0.15) -0.17(-0.29,-0.09) -0.23(-0.32,-0.12) -0.27(-0.43,-0.12) -0.10(-0.25,0.07) -0.19(-0.49,0.02) -0.20(-0.39,0.02) -0.17(-0.34,-0.01) 

Sex -0.22(-0.41,-0.02) -0.16(-0.23,-0.11) -0.06(-.11,-0.03) -0.08(-.12,-0.02) -0.11(-.19,-0.03) -0.18(-0.29,-0.03) -0.12(-0.22,-0.01) -0.03(-0.2,0.11) 

MELD 

score 

-0.19(-0.39,0.03) -0.21(-0.41,-0.09) -0.07(-.21,0.11) -0.17(-0.31,0.02) -0.16(-0.29,0.01) -0.8(-0.32,0.11) -0.09(-0.23,0.02) -0.14(-0.40,0.03) 

η  -0.12(-0.43,0.03)  

exp(−θ) 0.42(0.75,0.21) 0.39(0.69,0.06) 0.41(0.77,0.01) 0.45(0.71,0.02) 0.31(0.69,0.01) 0.44(0.83,0.02) 0.37(0.79,0.07) 0.36(0.69,0.08) 

θ 1.43(1.59,1.34) 1.21(1.33,1.14) 1.39(1.51,1.29) 1.15(1.32,1.14) 1.53(1.69,1.41) 1.27(1.35,1.14) 1.41(1.57,1.30) 1.23(1.39,1.21 
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Table 4: The Goodness-of-Fit for the Liver Cirrhosis Dataset 

 Parameters  Actual Estimates  Relative Bias 

Model1(a) β0  1.12  1.10 

 β1 1.92 1.83 

 β2  1.20  1.04 

 β3  2.79 2.81 

Model1(b) β0  1.13 1.17  

 β1 1.89 1.93 

 β2  1.23 1.08 

 β3  2.72 2.77 

Model1(c) β0  1.08 1.11 

 β1 1.86 1.91 

 β2  1.32 1.54 

 β3  2.68 2.61 

Model1(d) β0  1.12 1.15 

 β1 1.69 1.87 

 β2  1.27 1.13 

 β3  2.70 2.72 

Model2(a) β0  1.11 1.10 

 β1 1.85 1.81 

 β2  1.29 1.11 

 β3  2.58 2.67 

Model2(b) β0  1.15 1.12 

 β1 1.75 1.81 

 β2  1.18 1.49 

 β3  2.85 2.81 

Model2(c) β0  1.10 1.11 

 β1 1.89 1.95 

 β2  1.31 1.43 
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 β3  2.75 2.71 

Model2(d) β0  1.13 1.07 

 β1 1.81 1.89 

 β2  1.19 1.02 

 β3  2.65 2.80 
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Table 5: DIC values for different Models 

Models DIC values 

Model 1(a) 243.52 

Model 1(b) 237.65 

Model 1(c) 230.14 

Model 1(d) 250.61 

Model 2(a) 273.12 

Model 2(b) 247.91 

Model 2(c) 242.35 

Model 2(d) 265.79 
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Figure 1: Demonstrate the distribution patients surviving using Kaplan Meier plot in Female 

group. 
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Figure 2: Demonstrate the distribution patients surviving using Kaplan Meier plot in Male 

group.
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Figure 3: Demonstrate the distribution patients surviving over the study duration using 

Kaplan Meier plot.
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Figure 4: Demonstrate the distribution of transformed MELD scores at different arbitrary values of 
lambda.  
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